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Abstract. A procedure for the design of quantum well structures optimized as regards inter-
subband double-resonant second-harmonic generation is proposed. It relies on the inverse
spectral theory, allowing one to start from an arbitrary potential and shift its levels to the
positions required for a particular application, in this case such that they become equispaced.
The free parameters that appear, and determine the shape of the modified potential, are then
varied in order to find the optimal potential shape that maximizes the nonlinearity, while level
energies are automatically fixed throughout this variation. Furthermore, the procedure is adapted
to handle cases of variable effective mass, unlike the conventional inverse spectral theory. The
use of this procedure is demonstrated by the designing of a graded AlGaAs ternary alloy quantum
well optimized for second-order nonlinearity at 10.6 µm. Starting with a truncated parabolic
potential, the final optimized quantum well potential is obtained, with nonlinearity exceeding
values previously obtained in the literature.

1. Introduction

Intersubband transitions in semiconductor quantum wells (QW) have attracted considerable
research attention. This is mainly due to the large values of the dipole transition matrix
elements and the possibility of achieving resonance conditions. Thus, the linear and—to
an even greater extent—the nonlinear optical processes in these structures are very intense.
Large dipole matrix elements are associated with a small effective massm∗ of electrons,
scaling approximately asm∗−1/2 (reference [1]). Within a given material (i.e., for a given
value ofm∗), however, a lot can be done to enhance those matrix elements that are relevant
to a particular type of nonlinearity, by appropriate shaping of the QW (i.e., its potential),
and hence the quantized states’ wave functions. While varying the QW shape it is (almost
always) essential to keep the level spacing as specified, e.g. equispaced for double-resonant
second-harmonic generation (SHG). Clearly, only asymmetric structures are useful for SHG,
and these may be realized either by an asymmetric composition grading carried out in a
stepwise-constant or continuous manner (see, e.g., references [1] and [2]), or by electric
field biasing (see, e.g., reference [3]), or both.

Some considerations regarding optimizing the QW shape, within the class of simple step-
graded QWs, and within a somewhat idealized model, were presented in reference [1]. If the
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search for the best potential shape requires any amount of trial-and-error-type calculation,
most of the effort is spent in restoring the level spacing upon changing the potential shape,
rather than in checking the values of the matrix elements. Within the class of continuously
graded QWs, this problem may be very serious. For these we have recently used [4]
a method based on supersymmetric quantum mechanics. It starts with a (rather arbitrary)
initial potential, such that its quantized states are positioned as required, e.g. are equispaced if
the QW is intended for resonance SHG, and then generates a family of potentials isospectral
to the initial one, their shape being controlled by one or more scalar parameters. By varying
these parameters one may easily search for the potential shape which maximizes those
matrix elements relevant for e.g. resonance SHG. Here we describe another method for
finding the best potential shape of QWs, which is even more versatile than the one based on
supersymmetry. It starts with a completely arbitrary initial potential, and, using the inverse
spectral theory (IST) (see, e.g., reference [5]), shifts the states to their desired positions,
while, at the same time, it introduces a free parameter (of free parameters) for varying
the shape of this modified potential in an isospectral manner. The use of the method
is exemplified by using it to find the QW shape for optimal second-order susceptibility,
relevant for SHG.

2. The IST tailoring of the potential

The electron motion in a potential wellU(z), with a constant effective massm∗, is described
by the envelope function Schrödinger equation

− h̄2

2m∗
d2ψi(z)

dz2
+ U(z)ψi(z) = Eiψi(z). (1)

The discrete eigenenergies of the system, and the corresponding eigenfunctions, are denoted
asEi andψi(z) (i = 1, 2, . . .), respectively. The IST enables one to construct a modified
potentialUIST (z), which has the property that one (say, thekth) of its eigenvalues is shifted
by a prescribed amountε from thekth eigenvalue (Ek) of the initial potentialU(z), while
all of the other eigenvalues ofU(z) andUIST (z) coincide. It has the form

UIST (z;Ek + ε) = U(z)− h̄2

m∗
d2

dz2
ln[Wk{ψε,ψk}] (2)

whereWk(z) is the Wronskian

Wk{ψε,ψk} = ψε(z)dψk(z)

dz
− ψk(z)dψε(z)

dz
(3)

with ψk being thekth eigenfunction of the initial potential, andψε any solution of the
Schr̈odinger equation withU(z) corresponding to the energyEk + ε. The shiftε may take
any value in the interval(Ek−1 − Ek,Ek+1 − Ek), i.e., the shifted level cannot cross any
other level [6].

The functionψε , which is clearly not a normalizable eigenfunction, may be written
as a linear combination of the two particular solutions, i.e.,ψε = C1ϕ1(z) + C2ϕ2(z),
satisfying the fundamental initial conditionsϕ1(0) = ϕ′2(0) = 1 andϕ2(0) = ϕ′1(0) = 0.

Consider a system having non-equispaced states, and hence not appropriate for resonant
SHG. Its energy spectrum may be ‘corrected’ to provide equal (and just right) spacing
between, say, the ground (1) and some other two states (2 and 3) by effecting shifts (one
at a time):E2→ Eshift

2 = E1+1E andE3→ Eshift
3 = E1+ 21E, where1E = h̄ω is the

photon energy of the input laser radiation. The values of the shifts of the initial potential
states in the above equations are thusε2 = Eshift

2 − E2 andε3 = Eshift
3 − E3.
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Figure 1. The procedure of level shifting and the potential asymmetrization, causing levels 2
and 3 to shift with respect to the fixed level 1.

If the initial potential is symmetric, and lacks second-order nonlinearity, one also has
to build in the asymmetrization in this procedure. For this purpose, the transformation
described above is carried out in two steps. First, the wave functionψε corresponding to
the energyE3 + ε3 = E1 + 21E is chosen, via the constantsC1 = 0 andC2 = 1, to have
opposite parity to that ofψ3, i.e., to be odd, which delivers a new potential

Ũ (z;E3+ ε3) = U(z)− h̄2

m∗
d2

dz2
ln[W3{ψε3, ψ3}] (4)

which, however, is still symmetric, as displayed in figure 1, but has the third state correctly
spaced with respect to the ground state:Eshift

3 −E1 = 21E. The normalized wave functions
for i 6= 3, corresponding to it, are given by

ψ̃i(z) =
(

1− ε3

Ei − E3

)−1/2 [
ψi(z)− 2m∗ε3

h̄2

ψε3(z)

W3{ψε3, ψ3}
∫ z

−∞
ψiψ3 dz′

]
(5)

while the wave function fori = 3

ψ̃3(z) = ψ3(z)

W3{ψε3, ψ3} (6)

remains to be normalized numerically.
Next comes the asymmetrization. In calculatingψε2 at the energyE2+ ε2 = E1+1E,

the constantsC1,2 are chosen such that, along with the particular solution having the opposite
parity toψ2, the other one having the same parity asψ2 (i.e., odd) is also introduced. Indeed,
settingC1 = 1 andC2 = α gives the final potential

UIST (z;α,E3+ ε3, E2+ ε2) = Ũ (z)− h̄2

m∗
d2

dz2
ln[W̃2{ψε2(α), ψ̃2}] (7)

or, after substituting (4) into (7),

UIST (z;α) = U(z)− h̄2

m∗
d2

dz2
ln[W3{ψε3, ψ3}W̃2{ψε2(α), ψ̃2}] (8)
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which is asymmetric for allα 6= 0. The corresponding normalized wave functions fori 6= 2
read

ψIST
i (z;α) =

(
1− ε2

Ei − E2

)−1/2
[
ψ̃i(z)− 2m∗ε2

h̄2

ψε2(z;α)
W̃2{ψε2(α), ψ̃2}

∫ z

−∞
ψ̃iψ̃2 dz′

]
(9)

where nowE3 ≡ Eshift
3 , while the wave function fori = 2

ψIST
2 (z;α) = ψ̃2(z)

W̃2{ψε2(α), ψ̃2}
(10)

also remains to be normalized numerically. Equations (8)–(10) are the ‘design’ equations
for the final asymmetric potential and the wave functions which enable a finite value of the
cyclic product of the matrix elements, relevant for second-order nonlinearity, to be obtained.
The free parameterα appearing in (8)–(10) implies the existence of a family of isospectral
potentials. By varyingα, one also varies the potential shape and hence the wave functions
and the dipole matrix elements, with the final aim of finding the optimalα = αopt , i.e., the
optimized potentialUIST (z;αopt ) which gives the largest product of relevant matrix elements
(and resonant second-order nonlinearity). Throughout this variation ofα in (8), the energies
of its states, and hence the resonance conditions, remain preserved, i.e.,Eshift

2 − E1 = 1E
andEshift

3 − E1 = 21E.

3. Mapping the variable mass into a constant-mass Hamiltonian

In semiconductor quantum well structures based upon graded semiconductor alloys, it is
not only the potential, but also the electron effective mass, that is position dependent. The
results of section 2, relying on the constant-mass assumption, are thus likely not to be
directly applicable to almost all common QWs (the exception are some specially designed
QWs based upon quaternary alloys, for which the effective mass can be kept constant while
the potential varies). In technologically more convenient, ternary-alloy-based QWs, the
effective mass is necessarily position dependent, as discussed below, and some additional
consideration is necessary before one can use the results of section 2 for these structures.
The approach that we use is to map the variable-mass Hamiltonian onto one with constant
mass. Here we extend the consideration presented in reference [8] to include the cases of
truncated and asymmetric potentials.

Consider a QW based upon a ternary semiconductor alloy AxB1−xC, with the mole
fraction varying along thez-axis, i.e.,x = x(z). We take the conduction band edge in
the BC compound to be lower by1V than that in the AC compound, while the electron
effective masses in the two aremBC andmAC, respectively. Then the potential experienced
by the electrons (the conduction band edge), and their effective mass both vary along thez-
axis asV (z) = 1V x(z), andm(z) = mACx(z)+mBC[1−x(z)]. Thus, in ternary alloys the
potential and the effective mass are related as

V (z) = (1V/1m)[m(z)−mBC] = θ [m(z)−mBC]

where1m = mAC −mBC andθ = 1V/1m.
With the position-dependent effective mass, the Schrödinger equation for the envelope

functions has the Ben Daniel–Duke form [7], i.e., with the notation introduced above:

d

dz

(
1

m(z)

dψ(z)

dz

)
+ a[E − θ(m(z)−mBC)]ψ(z) = 0 (11)
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wherea = 2m0/h̄
2, andm0 is the free-electron mass. Now we aim at finding the function

m(z), and, uniquely related to it,V (z) andx(z), such that the eigenstates of equation (11)
are identical to those of the constant-mass equation (8) with the potentialUIST (z) specified
in advance. For this purpose we introduce a new coordinatey, such thatz = f (y), where
the functionf (· · ·) will be specified later. In terms of this new coordinate, equation (11)
takes the form

d2u(y)

dy2
+ {A(y)+ am(y)f ′2(y)[E − θ(m(y)−mBC)]

}
u(y) = 0 (12)

with

A(y) = −1

4

(
d ln[m(y)f ′(y)]

dy

)2

+ 1

2

d2 ln[m(y)f ′(y)]
dy2

(13)

where

u(y) = constant× ψ(y)/
√
m(y)f ′(y)

and

ψ(y) = ψ [f (y)] = ψ(z)
m(y) = m[f (y)] = m(z)
f ′(y) = df (y)/dy.

Equations (11) and (12) clearly have identical spectra.
Now we require the constant-mass (m∗ = mBC) Schr̈odinger equation with the optimized

potentialUIST (y, αopt ), equation (8), to coincide with equation (12). This results in a system
of two equations, from which we find

m(y) = 1

4amBCθ
ν−2(y) (14)

z = f (y) =
∫ y

0

√
mBC

m(y ′)
dy ′. (15)

where the functionν(y) in equation (14) is found by solving the nonlinear differential
equation

2ν(y)
d2ν(y)

dy2
−
(

dν(y)

dy

)2

− 4amBC[θmBC+ V (y)]ν2(y)+ 1= 0. (16)

Equation (16) may be solved by first finding the particular solutionsζL,R(y) of the
characteristic equation [9] (here we specialize to the case of a truncated potentialV (y) =
V = constant for|y| > 1, andV (y) = UIST (y, αopt ) for |y| < 1):

d2ζ(y)

dy2
− amBC[θmBC+ V ]ζ(y) = 0 |y| > 1

d2ζ(y)

dy2
− amBC[θmBC+ UIST (y, αopt )]ζ(y) = 0 |y| < 1

(17)

chosen such that their Wronskian squared equals unity. In analogy to scattering theory,
the two linearly independent solutions of equation (17) may be written as (κ2 =
amBC[θmBC+ V ])

ζL,R(y) =


exp(κy)+ RL exp(−κy) TR exp(−κy) y < −1
AL,Rs1(y)+ BL,Rs2(y) −1 < y < 1

TL exp(κy) RR exp(κy)+ exp(−κy) y > 1

(18)
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wheres1,2(y) are the particular solutions of (17), satisfying the fundamental initial conditions
s1(0) = s ′2(0) = 1 and s2(0) = s ′1(0) = 0, and may be found numerically, while the
constantsTL,R, RL,R, AL,R andBL,R are determined from the Wronskian properties and
the boundary conditions aty = ±1. These constants depend slightly on the choice of1,
but this dependence becomes diminishingly weak as1 increases. We also use the fact that
TL = TR = T .

Since the Wronskian squared ofζL andζR equals unity, in terms of the two particular
solutions of (17) the general solution of equation (16) may be written as [9]

ν(y) = [Ceζ
2
L(y)±

√
1+ 4CeCoζL(y)ζR(y)+ Coζ 2

R(y)]/(2κT ) (19)

whereCe,o are constants to be determined. Now, having in mind the physically acceptable
values of the QW parameters, i.e.,m(|y| → ∞) = V (1m/1V ) + mBC = mb and
V (|y| → ∞) = V , and accounting for the asymptotic behaviour ofζL,R(y), we find
that the conditionν(|y| � 1)→ constant6= 0 is satisfied by the choice of constants

Co = ± T RL

(RRRL − T 2)
Ce = ± T RR

(RRRL − T 2)
. (20)

Finally, substitution into equation (14) gives the effective-mass variation

m(y) = mb
/[

1+ RR,L

(RRRL − T 2)
exp(±2κy)

]2

|y| > 1 (21)

where the subscriptsR (L) and+ (−) in the exponential refer toy < −1 (y > 1), and

m(y) = mbT
2(RRRL − T 2)2[

T RRζ
2
L(y)− (RRRL + T 2)ζL(y)ζR(y)+ T RLζ 2

R(y)
]2 |y| < 1. (22)

The real-space variation of the effective mass,m(z) = m[f (y)] = m(y), may then be
found from (15) and (21)–(22) numerically, and then the potentialV (z) and the grading
function x(z) directly follow, e.g.

V (z) = V [z(y)] = V (y) = 1V

1m
[m(y)−mBC]. (23)

The final Hamiltonian has the effective mass following the potential, as is appropriate for
ternary-alloy-based QWs, and is fully isospectral with the Hamiltonian with the constant
effective massm∗ = mBC and the optimized potentialUIST (y, αopt ) (equation (8)). Its
normalized wave functions are given by

ψ
i
(y) = [m(y)/mBC]1/4ψIST

i (y) (24)

in parametric form, i.e., withz = f (y) (equation (15)). The wave functionsψIST
i (y)

(equations (9) and (10)) are here assumed to be already normalized, i.e., we assume that∫ |ψIST
i (y)|2 dy = 1.

4. Numerical results and discussion

To illustrate the above consideration, we have performed optimization calculations to design
a QW structure for double-resonance SHG of CO2 laser radiation (¯hω = 1E = 116 meV).
Taking the lowest three levels to be relevant in this process, a well depth of at least 400 meV
is necessary to accommodate these levels, and the compounds AC and BC should be chosen
accordingly. The commonly used AlxGa1−xAs system meets this requirement, and has the
additional advantages that it is strain-free, and technologically well understood, so it was
chosen for further work. The conduction band0-valley discontinuity is1V =750 meV,
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and the electron effective masses of the two compounds aremGaAs = 0.066 m0 and
mAlAs = 0.15m0 [7].

In QWs with 0-valley-related levels, it is only thez-component (perpendicular to the
QW layer) of the electric field that is active in intersubband transitions. Considering the
process of SHG, the second-order nonlinear susceptibility, that relates the field at the pump
frequency and the polarization at the harmonic frequency, is largest under double-resonance
conditions, i.e.,E2 − E1 = E3 − E2 = h̄ω, and then its only relevant component amounts
to

χ2ω
zzz =

e3(ρ11− ρ22)

Lzε0

µ12µ23µ31

(h̄02)2
(25)

whereµij = 〈i|z|j〉 are the transition matrix elements (dipole moments),Lz denotes the
QW structure width,ρii is the electron density in statei per unit well surface, ¯h02 is
the linewidth (taken as common to all transitions). By varying the QW profile (potential
shape) one varies the dipole moments, while the linewidth is affected far less significantly.
Therefore, maximizingχ2ω

zzz effectively amounts to maximizing the cyclic product of matrix
elements,5(2) = µ12µ23µ31, in the numerator of (25).

Figure 2. The dependences of the shiftsε2 = Eshift
2 −E2 andε3 = Eshift

3 −E3, of levels 2 and
3, necessary to obtain equal spacings (double resonance), on the parabolic potential slope1E .

To find the optimized asymmetric potential, with the largest5(2), we start from a family
of truncated parabolic potentials of the form

U(z) =


m∗

2

(
1E(N)
h̄

)2

z2 |z| < 1

V |z| > 1

(26)

where1E(N) = 84.75+ 0.25N (meV), andN is an integer incremented from 1 to 241.
The effective mass in (26) is taken as constant and equal to that in GaAs, and the potential
is truncated atV = 400 meV (hence the well width1 changes with incrementingN ).
Because of truncation this is not exactly a linear harmonic oscillator, and in no case will the
levels be strictly equispaced. Furthermore, their energies will change asN (i.e., the well
width) varies, so none of the potentials (26) meets the double-resonance condition. Applying
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an isospectral transform like supersymmetry [10] will make them asymmetric, and allµij
would then be nonzero, but will not correct the level’s energies. The dependences on the
frequency1E/h̄ of the deviations of these energies from their desired positions that would
provide double resonance at ¯hω = 116 meV (i.e., in the spirit of section 2, the necessary
shifts ε2 = Eshift

2 − E2 andε3 = Eshift
3 − E3) are given in figure 2.

Figure 3. Values of the matrix element product5(2) = µ12µ23µ31 obtainable with various
values of the QW design parameters1E(N) andα.

The initial potentials are then processed along the lines presented in section 2: the
third level of U(z) is shifted such that it is separated by 232 meV from the first, i.e.,
Eshift

3 = E3 + ε3 = E1 + 232 meV, and, by adjusting the constants, the parity of its
wave function is set opposite to that ofψ3(z). Next, the second level is shifted according
to Eshift

2 = E2 + ε2 = E1 + 116 meV. This procedure was repeated for all potentials
in the family (26), and in each case the asymmetrization parameterα was varied while
monitoring the value of the matrix element product5(2) (calculated by using equations (9)
and (10)). With the initial potentials chosen symmetric, it is enough to give only positive
values to the parameterα, because here5(2)(−α) = −5(2)(α); otherwise both positive
and negative values should be explored. We should also note here that, in doing these
calculations, one has to be careful that the Wronskians in equations (4)–(10) do not cross
zero, in order to avoid singularities and physically unacceptable solutions. The results of this
search are displayed in figure 3. The largest value of5(2) is found with the parameter values
N = 68 (i.e.,1E(68) = 101.75 meV) andαopt = 0.18. Here we have5(2) = 4375.2 Å3,
with individual dipole momentsµ12 = 16.96 Å, µ23 = 28.12 Å and µ31 = 9.17 Å. The
corresponding optimized potentialUIST (z;αopt ) is given in figure 4. It may be of interest
to note that the original potential, from which this optimized potential was derived, had
its levels atE1 = 50.87 meVE2 = 152.54 meV andE3 = 253.45 meV; therefore (with
1E21 = 101.67 meV and1E32 = 100.91 meV) it was not matched for resonant SHG
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Figure 4. The optimized potentialUIST (z), corresponding to1E = 101.75 meV and
αopt = 0.18, with constant effective mass, and the optimized realizable potentialV (z) with
the variable effective mass following it, as is appropriate for a graded AlGaAs alloy.

of h̄ω = 116 meV radiation, and its asymmetrization via the isospectral supersymmetric
transform alone would not help. However, the IST-based level shifts, accompanied by
asymmetrization, produced the desired outcome.

The potential optimized so far, assuming a constant effective mass, is not directly
realizable in graded ternary alloys, because the effective mass there cannot be kept constant.
To make it realizable, we have to map the Hamiltonian withUIST (z;αopt ) andm∗ = constant
into the Hamiltonian with the effective mass following the potential, as is appropriate for
the chosen ternary alloy system. This mapping is carried out along the lines described
in section 3, in particular by equations (21)–(23) and (15). The optimized Hamiltonian
realizable in graded AlxGa1−xAs having been obtained, it remains to check the product of
the matrix elements for this new (but realistic) system. Using equation (24) we find that
the matrix elements

µij = 〈ψ
i
(y)|z(y)|ψ

j
(y)〉

now amount toµ12 = 16.31 Å, µ23 = 25.86 Å andµ31 = 9.27 Å, so5(2) = 3910Å3 has
somewhat decreased from what was predicted above. This should have been expected, since
the effective mass throughout the structure generally exceeds the constant valuem∗ = 0.066
initially taken, andµ ∼ m−1/2 (reference [1]). The realistic optimized potential, given
in figure 4, has a negative undershoot, and hence has a somewhat larger span of values
than the originalU(z). However, the negative undershoot itself makes no difficulties in
the realization, because the reference zero of the potential is irrelevant for the physics,
and the whole picture may be shifted up or down at will. In realizing this potential by
grading the AlxGa1−xAs alloy, via the relationx(z)1V = V (z) + constant, one may set
constant= |min(V (z))|, so thatx = 0 at the lowest point of the well, and the full potential
span offered by AlxGa1−xAs is taken advantage of.

Comparison of the maximal value of5(2) found here against the best values obtained
elsewhere for step-graded QWs (e.g.5(2) = 2394Å3, in reference [1], or5(2) = 2635Å3,
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in reference [11]) shows that5(2) obtained in this work (though in a continuously graded
QW) is better by∼30%. We should also note that, in the case of deeper wells, one would
have to account for the bulk nonparabolicity. It cannot be directly included in the theory
described above because an energy-dependent potential would result, and this effect would
be better accounted for by slight numerical ‘repolishing’ of the optimized potential obtained
without it. Our previous experience with SUSYQM-based QW optimization as regards
second-harmonic generation [4] indicates that such ‘repolishing’ has a rather mild influence
on the best potential shape (slightly squeezing the output of idealized calculations in order
to compensate for the nonparabolicity-increased effective mass).

It should be noted that the particular schedule of steps used above is just one among
several possibilities. To achieve the required positions of the three levels, one may choose to
fix the second or the third, and shift the other two, which would produce a potential different
from the one obtained here. Furthermore, additional freedom may be gained by introducing
more free constants when constructing theψε-functions from the fundamental solutions.
This should be done with great care, however, because e.g. introducing a parameterβ in
ψε3 (analogous toα in ψε2) would result in a highly oscillatory term(d2/dz2) ln[W{ψ3, ψε3}],
which would eventually yield a highly oscillatory, and difficult to realize, final potential.

5. Conclusion

A procedure for the design of quantum well structures optimized as regards intersubband
double-resonant second-harmonic generation was proposed and discussed. Starting with
an arbitrary potential, with level energies not properly positioned for this application, this
procedure allows one to shift the relevant levels to the desired positions, by using the inverse
spectral theory, and vary the potential shape, controlled by free parameters, in order to find
the shape that maximizes the matrix elements relevant for second-harmonic generation.
Furthermore, the procedure is devised to handle the case of position-dependent effective
mass, and is thus applicable to realistic QW structures. Its applicability was demonstrated
by designing a graded AlGaAs ternary alloy quantum well optimized as regards second-order
nonlinearity at 10.6µm. Starting with a truncated parabolic potential, the final optimized
QW potential that was obtained had a second-order susceptibility significantly (∼30%)
exceeding values previously obtained in the literature, and is slightly better than that obtained
in reference [4].
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